有的碳素結構鋼還添加微量的鋁或鈮(或其它碳化物形成元素)形成氮化物或碳化物微粒,以限制晶粒長大,使鋼強化,節(jié)約鋼材。在中國和某些國家,為適應專業(yè)用鋼的特殊要求,對普通碳素結構鋼的化學成分和性能進行調整,從而發(fā)展了一系列普通碳素結構鋼的專業(yè)用鋼(如橋梁、建筑、鋼筋、壓力容器用鋼等)。
按鑄鐵中存在形式分類
根據碳在鑄鐵中存在的形式不同鑄鐵可分為:白口鑄鐵(絕大部分碳以滲碳體形式存在于鑄鐵中)、灰口鑄鐵(絕大部分碳以片狀石墨形式存在)、可鍛鑄鐵(由白口鑄鐵經石墨化退火制成,其中碳以團絮狀石墨形式存在)和球墨鑄鐵(在澆注前經球化處理,碳以球狀或團狀石墨存在。
碳素鋼的性能主要取決于鋼的含碳量和顯微組織。在退火或熱軋狀態(tài)下,隨含碳量的增加,鋼的強度和硬度升高,而塑性和沖擊韌性下降。焊接性和冷彎性變差。所以工程結構用鋼,常限制含碳量。
碳素鋼中的殘余元素和雜質元素如錳、硅、鎳、磷、硫、氧、氮等,對碳素鋼的性能也有影響。這和影響有時互相加強,有時互相抵銷。例如:硫、氧、氮都能增加鋼的熱脆性,而適量的錳可減少或部分抵銷其熱脆性。殘余元素除錳、鎳外都降低鋼的沖擊韌性,增加冷脆性。除硫和氧降低強度外,其它雜質元素均在不同程度上提高鋼的強度。幾乎所有的雜質元素都能降低鋼的塑性和焊接性。
應變時效經冷加工變形后的性能隨時間而變化的現(xiàn)象。碳和氮對應變時效的影響,與對淬火時效的影響相似,磷也促進應變時效。低碳鋼因冷變形而消失的屈服點,隨時間的延長而逐漸恢復。應變時效比淬火時效更為復雜。如鋼材經淬火后再進行冷加工,無論在室溫或稍高溫度下,均將加速其應變時效。