軟件層面,在語言層面上,ZK更友好的格式,也會帶來加速生成的過程,比如Aleo的Leo語言。再就是算法本身的優(yōu)化,雖然說有一定的優(yōu)化空間,但是要想有大的突破需要非常多的時間,畢竟牽涉到很多數(shù)學問題。
硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
既然共識是POS的,自然也就不怕ASIC控制網(wǎng)絡,壓根也控制不了,也就不存在分叉的問題,而且從算法和定位的角度上來說,ASIC也是必然需求。Aleo芯片機,Aleo-ASIC,zktaoma或者maxsayss