證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導(dǎo)。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當(dāng)處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運(yùn)算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴(kuò)展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
既然共識是POS的,自然也就不怕ASIC控制網(wǎng)絡(luò),壓根也控制不了,也就不存在分叉的問題,而且從算法和定位的角度上來說,ASIC也是必然需求。Aleo芯片機(jī),Aleo-ASIC,zktaoma或者maxsayss
芯片的硬件指的是運(yùn)行指令的物理平臺,包括處理器、內(nèi)存、存儲設(shè)備等等。芯片數(shù)據(jù)中常出現(xiàn)的“晶體管數(shù)量”、“7nm制程”、“存儲”等,往往指的就是硬件參數(shù)。
軟件則包括固件、驅(qū)動程序、操作系統(tǒng)、應(yīng)用程序、算子、編譯器和開發(fā)工具、模型優(yōu)化和部署工具、應(yīng)用生態(tài)等等。這些軟件指導(dǎo)硬件如何響應(yīng)用戶指令、處理數(shù)據(jù)和任務(wù),同時通過特定的算法和策略優(yōu)化硬件資源的使用。芯片數(shù)據(jù)中常出現(xiàn)的“x86指令集”、“深度學(xué)習(xí)算子”、“CUDA平臺”等,往往指的就是芯片軟件。
早在2021年,英偉達(dá)就曾公開表示過“禁止使用轉(zhuǎn)換層在其他硬件平臺上運(yùn)行基于CUDA的軟件”,2024年3月,英偉達(dá)更是將其升級為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉(zhuǎn)譯層在其他GPU上運(yùn)行CUDA軟件